Histomorphometric Comparison of 3 Osteotomy Techniques

Frederic B. Slete, DDS,* Paul Olin, DDS, MS,‡ and Hari Prasad, MS†

The evolution of modern dental implant treatment can be traced to at least 2500 BC with the Egyptian civilization.¹ Throughout this evolution, much time, effort, and research have been directed toward the single root form implant fixture. In the last few decades, an endless array of shapes, grooves, threads, tapers, platforms, surface coatings, alloys, ceramics, etchings, polishes, and designs have been tried, tested, and marketed.² ³

All in an effort to gain or increase primary stability and the promise of subsequent secondary stability or osseointegration.

As recently as 1995, it was postulated that in implant dentistry “the system has not been fully optimized.”⁴

Dentistry is still on a quest to achieve and enhance primary stability and thus predictably allow for immediate or earlier loading of implants.

Primary stability of implants is defined as dependent upon bone quality and quantity, implant fixture design, and surgical technique.⁵–⁷ The goal of primary stability is achieved when implant micromotion can be limited to less than 50- to 150-μm thresholds until osseointegration occurs.⁸–¹⁰

The most common osteotomy preparation technique for implant placement is surgical extraction drilling of bone. Commercially available surgical burs are modeled after drill bits or burs designed to cut materials other than bone such as metal or wood.¹¹

These burs, adapted for dental use, produce an osteotomy through removal or extraction of bone tissue to create a “hole” to receive the implant fixture.¹²

Bone preparation without “extraction” drilling can be achieved using osteotomes. This technique was introduced by Summen¹³ in an attempt to increase primary stability and expand the edentulous ridge without the extraction of bone tissue. Osteotome techniques have been shown to create a layer of compacted bone at the implant interface in the cancellous bone.¹⁴–¹⁶ This can enhance primary stability of the implant. However, limitations of this technique include surgical trauma, unintentional fracture or displacement of bone, and even patient vertigo.¹⁷

A new osteotome technique, as described by Huwais and Meyer,¹⁸ has recently been introduced. This method of osseous densification and bone compaction (osseodensification) occurs without the extraction of the bony matrix, but rather takes advantage of the viscoelastic and plastic abilities of the bone to deform using a time-dependent stress (force) to create a

Purpose: This pilot study compares the histomorphometric structure of osteotomy preparation through standard extraction drilling (SD), Summers osteotomes (SO), and a new method of nonextraction drilling called osseodensification (OD).

Method and Materials: Fresh porcine tibia plateau was used as the surgical specimen. Three preparation methods (N = 6 for each) were used to prepare 18 osteotomies according to manufacturer protocols. Eighteen tapered screw-vent (4.7 × 13 mm) implants were placed. After osteotomy preparation and implant placement, all porcine tibias were placed in 10% formalin solution in preparation for histological staining and sectioning. Histomorphometric analysis of all samples was performed to compare immediate bone-to-implant contact (BIC) and the percentage of bone volume within a 2-mm zone surrounding the implant.

Results: OD achieved 60.3% BIC, SO 40.7% BIC, and standard extraction drilling (SD) 16.3% BIC. The percentage of bone volume in the surrounding 2-mm width from the implant body using the same area units per sample was found to be greatest for OD.

Conclusion: This study demonstrated that osteotomy preparation can influence both BIC and percentage of bone volume around the implant. (Implant Dent 2018;27:424–428)

Key Words: osseodensification, BIC, BV%, primary stability
time-dependent strain (deformation).18–20 This technique produces a “burnished” crust of increased bone mineral density around the osteotomy site circumferentially and apically.18

The purpose of this investigation was to compare 3 techniques of osteotomy preparation through analysis of a histological survey for bone-to-implant contact (BIC), bone density, and distribution immediately surrounding the implant at the time of placement also known as bone volume percentage (BV\%), and trabecular integrity after preparation.

\textbf{Materials and Methods}

\textbf{Experimental Design}

Commercially available surgical burs were used to prepare the implant osteotomies in the standard drilling (SD) group using the manufacturers’ recommendations. This drilling sequence included a pilot drill (1.7 mm) followed by the manufacturers’ sequence for the appropriate implant size (4.7 mm). The Summers osteotome (SO) group was prepared with a pilot drill (1.7 mm) followed by consecutive Osteotome compaction to size the osteotomy through instrumentation sizes I, II, III of the set. Osseodensification (OD) was performed through a pilot drill (1.7 mm) and consecutive densification burs with maximum diameters of 2.5, 3.5, and 4.5 mm. Water irrigation was used during preparation.

\textbf{Specimens}

A total of 18 implant sites were prepared in 6 porcine tibia plateau bone samples. The bone samples were prepared by removing the articular surface and subchondral layers to expose the cancellous bone. Groups of 3 osteotomies were randomly prepared in each tibia, using the 3 preparation techniques. Care was taken to place each osteotomy outside the central softer medullary area of the tibia bone. A total of \(N = 6 \) for each technique was completed. A standardized 4.7mm \(\times 13 \)mm tapered screw-vent implant was fully seated in each osteotomy immediately upon completion of osteotomy preparation.

\textbf{Histologic Preparation and Quantitative Analysis}

The specimens were harvested and placed in 10% neutral buffered formalin immediately upon implant placement. Upon receipt in the Hard Tissue Research Laboratory at the University of Minnesota, the implant and bone specimen were sectioned vertically and placed in 4% paraformaldehyde, 0.05% glutaraldehyde, 1X phosphate buffer, pH 7.4. The specimens were dehydrated in a graded ethanol series and embedded in methyl methacrylate. Standard 6-μm sections containing the implant and bone were stained with Safranin-O, fast green, and hematoxylin.

Fig. 1. \textbf{A}, Three preparation methods with longitudinal section of the implant/bone relationship at day zero, \(\times 20, \times 50, \text{and} \times 100 \) magnification. The longitudinal section demonstrates that standard drilling produced minimal bone occupancy within the threads. The OD method demonstrates increased unfractured and compacted bone within the threads compared with the osteotome method, which reveals fractured and less dense bone segments. \textbf{B}, Three preparation methods’ cross-sectional view of implant/bone at day zero, \(\times 50 \) and \(\times 100 \) magnification. The center horizontal row is stained with Stevenel’s blue and van Gieson’s picrofuchsin and analyzed with polarized light. Vital bone (red), nonvital bone (green), and nuclei and cells (blue). Standard drilling produced minimal bone contact with the implant body. The OD method demonstrates intimate contact of compacted bone particles with the implant. The osteotome method produced an irregular contact with the implant and a scattered pattern of compacted fractured trabecular bone segments.
Immediately after sectioning specimens were dehydrated with a graded series of alcohols for 9 days. After dehydration, the specimens were infiltrated with a light-curing embedding resin (Technovit 7200 VLC; Kulzer, Wehrheim, Germany). After 20 days of infiltration with constant shaking at normal atmospheric pressure, the specimens were embedded and polymerized by 450-nm light with the temperature of the specimens never exceeding 40°C. The specimens were then prepared by the cutting/grinding method of Donath and Rohrer.21,22

The specimens were cut to a thickness of 150 μm on an EXAKT cutting/grinding system (EXAKT Technologies, Oklahoma City, OK). Then, specimens were then polished to a thickness of 45 to 65 μm using a series of polishing sandpaper discs from 800 to 2400 grit using an EXAKT microgrinding system followed by a final polish with 0.3-μm alumina polishing paste. The slides were stained with Stevenel’s blue and van Gieson’s picrofuchsin and cover-slipped for histologic analysis by means of bright field and polarized microscopic evaluation.

This method differentially stains material within the specimens. Very precise determinations of the percentage of vital, nonvital bone, and nonbone components are possible using computerized image analysis.

- Vital bone stains bright red with variations in intensity depending on the maturity of the bone
- Nonvital bone and osteoid stain bright green
- Nuclei of cells, including osteoblasts, osteoclasts, and osteocytes, stain blue
- Connective tissue stains various shades of green.

Histomorphometric Analysis

After histological preparation, the specimens were evaluated histomorphometrically. All the specimens were digitized at the same magnification using a Nikon Eclipse 50i microscope (Nikon Corporation, Tokyo, Japan) and a SPOT Insight 2 mega sample digital camera (Diagnostic Instruments Inc., Sterling Heights, MI). Histomorphometric measurements were completed using a combination of programs of the SPOT Insight 2 mega sample digital camera (Adobe Photoshop, Adobe Systems, and National Institutes of Health [NIH] Image).

At least 2 slides of each specimen were evaluated. Histomorphometric analysis was performed, and the parameters measured were the percentage of total bone area, connective tissue, and marrow space. BIC was also calculated for each specimen evaluated (Fig. 2). Slide magnification views of ×20, ×50, and ×100 were prepared for analysis, observation, and comparison.

RESULTS

In quantifying BIC (Fig. 2), OD preparation produced 60.3%, SO 40.7%, and SD 16.3% of implant perimeter in contact with bone. BV% within 2 mm of the implant (Fig. 2) produced 62% for OD, 49% for SO, and 54% for standard drilling (SD). It was also noted that the osseodensification (OD) method consistently produced an increase in fine bone particles dispersed within the surrounding marrow spaces and between the implant threads.

DISCUSSION

Comparing the histologic slides in Figure 1, A and B at ×100 magnification, some obvious and significant differences can be observed. The SD (standard drilling) method of preparation produced an implant fixture surrounded by native bone with some trabecular bone contact consistent upon the outer edge or perimeter of the implant threads, with even and undisrupted marrow spaces. There was very little, if any, trabecular bony structure between or in contact with the inner portion of the thread design or implant body core. This was consistent in both the longitudinal and cross-cut implant sections produced (Fig. 1, A and B). The distribution and pattern of the trabecular and marrow space architecture immediately surrounding the implant were unaltered by preparation and implant placement.

In the samples produced through SO, there was visible compression and condensation of the trabecular pattern in the area immediately adjacent and in contact with the implant. Bony contact with the perimeter and intrathread dimensions was enhanced compared with standard drilling (SD). The pattern of compression and condensation was nonuniform longitudinally and in cross-section. Some areas of the implant had a compressed trabecular pattern, and some areas did not, displaying irregular compression patterns. Furthermore, trabecular integrity was compromised consistently in the SO method, evident by the appearance of broken, fractured, and partial piece trabeculae throughout the compressed bony matrix in contact with or near the implant (Fig. 1, A and B). Although the data in this study resulted in a higher bone volume calculated in
the 2-mm zone around the implant through standard drilling (SD) 54% versus SO 49% method (Fig. 2), the histology immediately adjacent and in BIC calculated demonstrates enhanced bony geometry resulting through SO.

In the osseodensification (OD) method, compression and condensation of whole, intact trabeculae was observed surrounding the implant fixture in longitudinal and cross-section specimens (Fig. 1, A and B). Furthermore, bony condensation was also observed at the apical tip of the implant that was not consistently produced through the other 2 methods (Fig. 1A). The resulting compression and condensation of bone was much more consistent and uniform throughout, and the zone of visible compression was consistent at roughly 0.7 mm laterally and apically. The intimacy of BIC is visible at ×20, ×50, and ×100 magnification (Fig. 1, A and B). The completeness of intrathread spaces completely filled by whole intact trabecular structures should be noted. This is significant clinically in that trabecular bone condensation has been shown to increase primary stability, increase BIC, and accelerate bone healing.15,16,23

Bone mineralization and organic tissue properties along with its architectural distribution determine the mechanical competence properties of bone.24 Therefore, cancellous bone structural stability is directly related to trabecular connectivity, integrity, and thickness.25

Implant stability is affected by the quality of the microstructural bone near the implant. Local bone density has been postulated to be the best single morphometric predictor of implant stability.26 In this study, the osseodensification (OD) method demonstrated a significant increase in the bone volume surrounding the implant, in BIC (Fig. 2), and in structural integrity, and thus lends itself toward enhanced primary stability through a preparation technique, in effect, making a better hole.

These observations and results of trabecular integrity or fracture, depending on the preparation method may extend to the in vivo studies that have shown that osteotomy compression/expansion through SO results in delayed healing of the osteotomy.27,28 The microdamage and trauma produced, as evident by the resulting fractured and broken trabeculae, may promote a prolonged inflammatory and “clean-up” stage of healing before new bone growth and remodeling can ensue.

In vivo studies on sheep have shown that fine bony particles in the walls of the osteotomy and in between the threads of the implant body act as new bone growth initiators to enhance progression to secondary stability.29-31 Furthermore, osteotomy production without extraction of existing bone preserves existing collagen and bone bulk. The presence of collagen and bone bulk enhances vascularization, a critical element in new bone growth and remodeling.9

Further investigation into the resulting new bone growth and revascularization after OD is warranted. Investigation into cellular repair mechanisms and bone morphogenic protein timing and response comparing osseodensification versus standard drilling and osteotomy preparation would also be beneficial in understanding this new technique.

CONCLUSION

In this study:

- The osseodensification (OD) method of osteotomy preparation produced a higher BIC percentage (BIC%) than did the SO or standard drilling (SD) methods by 50% or more.
- Osseodensification (OD) preparation also resulted in significantly more BV% immediately surrounding the implant.
- The trabecular bone quantity and integrity immediately surrounding the implant appeared visibly more intact, denser, and more consistent in distribution through osseodensification (OD) preparation than the other methods tested. This was evident both laterally and apically to the implant body.
- The osseodensification (OD) method produced the presence of fine bony autogenous graft particles throughout the compacted trabeculae.

Clinical Application

Clinically, the preparation technique could have a significant influence on our ability to more consistently achieve an increase in primary stability on the day of surgery. Bone preparation techniques that promote BIC, BV%, bone quality around the newly placed implant enhance primary stability by definition.

The presence of autogenous bone graft particles could act as early new bone growth mediators and promote earlier healing. This could result in increased initial torque values, higher implant stability quotient values, decreased micromotion, and more predictable progression to secondary stability. The possibility of achieving immediate or early loading parameters is enhanced.

DISCLOSURE

No funding was received for this work. Drs. F. B. Slete and P. Olin both have a minority financial interest in Versah, LLC.

APPROVAL

This study did not involve live or in vivo use of human or animals and did not require IRB or ERB approval.

REFERENCES